Oscillatory behavior of second-order damped differential equations with a superlinear neutral term

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillatory Behavior of Second Order Neutral Differential Equations

Oscillation criteria are obtained for solutions of forced and unforced second order neutral differential equations with positive and negative coefficients. These criteria generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).

متن کامل

Oscillation Criteria for Second-Order Superlinear Neutral Differential Equations

and Applied Analysis 3 where τ t ≤ t, σ t ≤ t, τ ′ t τ0 > 0, 0 ≤ p t ≤ p0 < ∞, and the authors obtained some oscillation criteria for 1.7 . However, there are few results regarding the oscillatory problem of 1.1 when τ t ≥ t and σ t ≥ t. Our aim in this paper is to establish some oscillation criteria for 1.1 under the case when τ t ≥ t and σ t ≥ t. The paper is organized as follows. In Section ...

متن کامل

Oscillatory and Asymptotic Behavior of Solutions of Second Order Neutral Delay Differential Equations with “maxima”

The authors establish some new criteria for the oscillation and asymptotic behavior of all solutions of the equation. (a(t)(x(t) + p(t)x(τ(t)))) + q(t) max [σ(t),t] x(s) = 0, t ≥ t0 ≥ 0, where a(t) > 0, q(t) ≥ 0, τ(t) ≤ t, σ(t) ≤ t, α is the ratio of odd positive integers, and ∫∞ 0 dt a(t) < ∞. Examples are included to illustrate the results. AMS Subject Classification: 34K11, 34K99

متن کامل

Oscillatory Behavior of Second Order Neutral Differential Equations with Positive and Negative Coefficients

Oscillation criteria are obtained for solutions of forced and unforced second order neutral differential equations with positive and negative coefficients. These criteria generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).

متن کامل

Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments

(H) I := [t,∞), r,p ∈ C(I,R), r(t) > , and p(t)≥ ; (H) q ∈ C(I× [a,b], [,∞)) and q(t, ξ ) is not eventually zero on any [tμ,∞)× [a,b], tμ ∈ I; (H) g ∈ C(I× [a,b], [,∞)), lim inft→∞ g(t, ξ ) =∞, and g(t,a)≤ g(t, ξ ) for ξ ∈ [a,b]; (H) τ ∈ C(I,R), τ ′(t) > , limt→∞ τ (t) =∞, and g(τ (t), ξ ) = τ [g(t, ξ )]; (H) σ ∈ C([a,b],R) is nondecreasing and the integral of (.) is taken in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Opuscula Mathematica

سال: 2020

ISSN: 1232-9274

DOI: 10.7494/opmath.2020.40.5.629